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Using the relaxation formalism of nonequilibrium thermodynamics, a dynamic equa- 
tion of state and hyperbolic thermal-conductivity equation are derived for a gas 
with solid particles. 

Let a gas contain solid particles having a temperature ~. The change of this tempera- 
ture may be described by the phenomenological equation 

d--~-~ = LA. ( t )  
dt 

We note that in the general case ~ may PlaY the role of some internal relaxation param- 
eter (reaction coordinate, rotational or vibrational temperature of gas molecule, order param- 
eter, etc.) [1-3]. In this sense, the problem under consideration is more general and is 
not limited solely to the description of thermal relaxation in a dispersed system. 

If the system undergoes change, then for a pair of conjugate thermodynamic parameters 
x and y one can write the equation of the process y = y(x, ~). For ~ = 0 this equation 
describes a sequence of equilibrium states (quasistatic process). In the approximation 
linear in 6x and ~, for y and A we may write 

( OA ) 6x + ( OA ) 6~ A 

Here the partial derivatives refer to equilibrium states in which A = 0. 
time-differentiation operator D = d/dt and considering Eq. 
form 

(2) 

(3) 

Introducing the 
(3), we rewrite Eq. (i) in the 

where T x = 
we write 

OA ) 6x, (1 -4- -c~D) 6~= = L T~ -~x 

[L(~A/~)x] -I is the particle thermal-relaxation time. Using the Jacobian, 

(4) 

a ( A , x )  a ( x , ~ )  -- -~x a x 

Substituting (~/~Y)A from Eq. (6) into Eq. (5), and substituting the expression thus ob- 
tained for (~A/~) x into Eq. (4), we eliminate ~ from Eq. (2), writing the effective thermo- 
dynamic derivative ~y/~x in operator form: 

-~x = -gx ~ t + ~ o  

For a monochromatic sound wave the eigenvalue of the operator D is equal to im and Eq. 
(7) gives the results of [3]. 
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(7) to calculate the effective adiabatic index k of the mixture of gas 
In this case, y = p, x = V, and the partial derivatives are defined 

We now use Eq. 
and solid particles, 
from the equation of an adiabatic process pV k = const: 

Instantaneous compression- (Sp/~V)~ = --(p/V)k= @ure gas); 

Equilibrium compression -- (~p/~V) A = --(p/V)ko (equilibrium mixture) ; 

Nonequilibrium compression -- (~p/~V)ad = --(p/V)k. 

It follows from Eq. (7) that 

~=k~ + k~ (8) 
1 + t v D  

We use operator equation (8) to establish the relationship between pressure and volume 
for nonequilibrium compression of the mixture of gas with solid particles. Considering that 
p = p[V(t)], we write 

k o-k| . V dp ___ ~ p (9) 
~=k| + 1+tvD =-- p " dV -- p "-~-" 

Performing formal algebraic transformations and differentiating with respect to time, ,r 
obtain the dynamic equation of adiabatic states of the system: 

In Eq. (i0) it is considered that k~ko -I = TVT p ~ Now, with the aid of Eqs. (3) and (5), 
Eq. (4) can be reduced to the integral equation 

To ~a 

1 ...... " T x i @X ; A 0 T~ 
0 0 

Using the method of averaging functional corrections in the first approximation+ we ob:ain 
[4] 

t_t0 

6~ = t.,+ 6x. 
1~ To 

tx 

NOW us ing  t h i s  r e l a t i o n s h i p  to e l ~ n i n a t e  6~ from Eq. (2) and c o n s i d e r i n g  Eq. (6),  we have 

( ) [ (ay) _(ay'~ l (1+ t__~ )-,,  
ax a-I-y = -~xaY ~ + Tx A \ ax ]~,.] To 

whence it is evident that the eigenvalue of the operator D is equal to zo -I. Comparison of 
calculations with this approximation and calculations with exact solutions of Eq. (I0) shows 
good agreement. 

We note that Eq. (i0) may be obtained from the equations of the first law of thernody- 
namics, convective Newtonian heat transfer, and state. Thus, expansion (3) is fulfilled in 
that region where Newton's law q = ~(T= -- T s) is valid. 

We will now calculate the heat capacity of the nonequilibrium mixture of gas and solid 
particles. Expressing the heat capacity in terms of the entropy, on the basis of Eq. [7) 
we write 

r . ,os  

Here z characterizes a thermodynamic process. Considering in Eq. (ii) that S = S~ + S,,, 

(aS| 
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we finally obtain 

1 + ttD (12) 

In this approximation T T is the isothermal particle relaxation time (particle relaxation 
temperature at constant gas temperature). If we limit ourselves to small Peclet numbers, 
where convective heat transfer connected with the mean motion of the medium is significant 
[5], on the basis of Newton's law we may take r T = Cs(af(s))-a. 

We will consider the heat transfer of some volume V of the mixture, limited by a closed 
surface f, with the surrounding medium. Taking z = p = const in Eq. (12), we write the 
thermal balance of the volume of mixture in question: 

Cp T d V  = q.d|. (13) 

Applying the  Gauss- -Ost r0gradski i  theorem to Eq. (13) and expanding the a c t i o n  of  the opera-  
t o r  Cp from Eq. (12) ,  

cp = p %  = e c  | + Ov Cs 1 , ( 1 4 )  
1 + %D 

we obtain the local equation of thermal balance: 

ec~|  O2T Ot--- ~ + (ec'p| + Pv c~) OT _ div (q + VzCl). (15) 
at 

If we assume that for the dispersed medium Fourier's law 

q -~ -- %V T (16) 

is valid, where X is the thermal conductivity of the dispersed system, then from Eq. (15) 
there follows the hyperbolic thermal-conductivity equation 

02T = Z ( 1  4-% )v2T. (17) ec'p= t T - -  + (ec'~= § #v c )  aT a 
at 2 at ' - ~ -  

In Eq. (16), X is a phenomenological coefficient and naturally cannot be calculated by thermo- 
dynamic methods. Statistical methods are required to solve the problem. Such an approach 
was developed in the works of Buevich, in particular, [6, 7]. In [5], which is a continua- 
tion of those studies, the spectral concepts of temperature fields in the medium and parti- 
cles are analyzed in detail. It is shown that to an accuracy of terms of the order of the 
frequency squared, the temperature distribution in the medium is described by a hyperbolic 
equation: 

OvC;aCl) azT + (ec'p.. + pvC~) aT  = ~,-~o t + . - -  vZT. ( 1 8 )  
at 2 Ot ~to~ at 

T ! 

If we consider that t T is related to Zp by the formula z T : Zp[(~C;= + PVCs)/~Cp~], then Eq. 
(17) takes the form 

O2T 0 ) 
~-PvCs ) aT (Or< + c'~ 8) ,p --at= + (~c'~. ' " at X(1 ~ % - ~  vZT. (19) 

From Eq. (18) and (19) i t  i s  e v i d e n t  t h a t  X = X~#(~ ~ ( : ) / ~ ( o )  = ZT ' and ~(~) : [1 + (C" r 
, ! 

PVCs)]Tp, while for C~ e << PvCs, a(~) = Tp. The isobaric relaxation time can be cal- v~176 
culated for 

Cp~ p| 8 CsPsi. Cp~p~ 
= (20) 

t p = %  cp|174 6~ cp| 

In [8] the thermal conductivity in a boiling layer was described by a hyperbolic thermal- 
conductivity equation of the form 

O'~T aT ;~ 
_ _  = _  v~.T. (21) 

t~ ~ + at (pc)~.~ 
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However, as is evident from Eqs. (18) and (19), the transformation to Eq. (21) is not ~lways 

justifiable. 

Finally, we note that the normal thermodynamic relationships exist between the o~erator 
functions. Thus, the specific heat capacity ratios Cp = Cp= + (Cpo -- Cp~) (i + TTD) -~ and 

c V = cv= + (CVo -- cV~)(i + T:D) -: give the adiabatic index (8) -- k = Cp/CV. Having formally 
written the equation of the adiabat in the form pp -- const, we calculate the speed cf sound 
in the mixture of gas and solid particles (7): 

aZ = Op =re p -----k| P + m - - k =  
- -  ~ =a2 q- l + rvD (22) s P ~s 1 i -  Xv D 

Replacing D by the eigenvalue im, we obtain the relationship first derived by Meixner in 
acoustic relaxation theory [9]: 

a2 -- a2 
= (23) a~ = a~ + 

' io~gV 1 T  

In conclusion, we note that the formalism used here may prove useful in the anal~sis of 
other irreversible processes such as diffusion, phase transitions, chemical reactions, etc. 

NOTATION 

6, relaxation parameter; A, affinity, L, phenomenological coefficient; D, time differen- 
tiation operator; T x, relaxation time; m, frequency; p, V, T, pressure, volume, and tempera- 
ture; k, adiabatic index, to, characteristic time; q, thermal flux density; ~, heat-t~ansfer 
coefficient; Cz, total heat capacity; Cz, Cz, specific mass and volume heat capacities; f, 
surface; Q, heat; e, OV' porosity and volume concentration of particles; %, coefficient of 

thermal conductivity; o(z), B (~ $(i), coefficients introduced in [5]; p, density; S, 
entropy; a, speed of sound. Indices: point, time differentiation; ~, pure gas; 0, equilib- 
rium mixture; s, particle; z = p, V, T, characteristic of thermodynamic process. 
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